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Tiling Models

Definition

A tile is a 60o rhombus, also known as a lozenge. A tiling is a
covering of a polygonal domain with tiles such that there are no holes
nor overlaps.
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Tiling Models

Arthur Azvolinsky May 16, 2015 3 / 23

Tiling of a Hexagon
Tiling of a Hexagon with Smaller

Tiles



Tiling Models and Perfect Matchings

Definition

A perfect matching of a hexagonal lattice G is defined as a subset of edges
in G that covers each vertex exactly once.
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Perfect Matching Dual Graph



Tiling Models and Perfect Matchings
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Bijection Between Tiling Models
and Perfect Matchings



Tiling Models and the Height Function
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Height Model



The Frozen Boundary

Theorem

Let Ω be tilable, connected polygon with 3d sides. Fix ε ≥ 0. Consider the
tilings of Ω by rhombi of size 1

N . Then for sufficiently large N all but an ε
fraction of the domino tilings will have a temperate zone whose boundary
stays uniformly within distance ε of the inscribed curve.
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Frozen Boundary of a Tiling of a
Hexagonal Domain

Frozen Boundary of a Tiling of an
Octagonal Domain



Rational Parametrization

Rational Parametrization
A rational parametrization of a curve is a parametrization such that x(t) and y(t) are

both represented in the form P(t)
Q(t)

, where P(t) and Q(t) are polynomials in t.

Example:

x(t) = −1 − t2

1 + t2

y(t) = − t − t3

1 + t2
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Nodal Cubic



Duality
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Reciprocation over the Unit
Circle



Duality

Definition

Let C be an algebraic curve. Then the dual curve C* is defined as the set of poles of all the
tangent lines to C .

If C is given by parametric equations (u(t), v(t)), C* has parametric equations(
v ′(t)

u′(t)v(t) − v ′(t)u(t)
,

−u′(t)

u′(t)v(t) − v ′(t)u(t)

)
.

If C is given by the homogeneous function f (x , y , z) = 0, then the dual curve C* is given

by the set of lines
(

∂f
∂x

(a, b, c) : ∂f
∂y

(a, b, c) : ∂f
∂z

(a, b, c)
)

for every line (a : b : c) in C .
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A Curve and its Dual



Duality

Theorem

The dual of a dual curve is the original curve. That is, for any algebraic curve C, (C*)* = C.

Theorem
(Plucker’s Formula) If C has degree d, then the degree d ′ of C* is given by

d ′ = d(d − 1) − 2δ − 3κ,

where δ is the number of ordinary double points of C and κ is the number of cusps of C.
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Theorem Concerning the Dual of the Curve that is the
Frozen Boundary

Theorem

For a 3d-gonal, tilable, polygonal domain, the frozen boundary is a
rational algebraic curve whose dual has degree d.

For an n-gonal domain, if n is not divisible by 3, we choose the
lowest number 3d greater than n. The degree of the dual curve
in this case is then d .
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Frozen Boundary of a Rhombus Tiling of a Hexagon

The hexagon we are considering has 3 pairs of equal parallel sides.

Both the inscribed curve and the dual to the inscribed curve are
conics.

The inscribed curve is specifically an ellipse.
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Frozen Boundary of a Rhombus Tiling of a Hexagon

Example 1

Equations of Sides

y = −
√

3(x − 3)
y =
√

3(x − 3)
y = −

√
3(x + 3)

y =
√

3(x + 3)
y = −2
y = 2

Equation of Frozen Boundary

x2 + 1.9166667y2 − 7.66667 = 0
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Frozen Boundary of a Tiling of a
Hexagonal Domain



Frozen Boundary of a Rhombus Tiling of a Hexagon

Example 2

Equations of Sides

y = 0.5x + 2.5
y = 0.5x − 2.5
y = 16.66(x + 2)
y = 16.66(x − 2)
y = −.66(x + 2)
y = −.66(x − 2)

Equation of Frozen Boundary

−0.22254026037x2 −
0.268822y2 + 0.465063686975−
0.32382566942xy = 0
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Frozen Boundary of a Rhombus Tiling of a Hexagon

Example 3

Equations of Sides

y = x − 1
y = x − 3
y = −.26795x − 1
y = −.26795x + 1
y = −3.73205(x − .25)
y = −3.73205(x − 2.6782)

Equation of Frozen Boundary

−0.404941711057x2 −
0.7087299025y2 −
1.110655775625 +
0.5188288546999998xy +
1.4967493790500002x −
1.4174623775y = 0
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Frozen Boundary of a Tiling of a
Hexagonal Domain



Frozen Boundary of a Rhombus Tiling of an Octagon

The octagon we are considering is shown below, with seven 120o

angles and one 240o angle.

The inscribed curve is a cardioid, and the dual to the inscribed curve
is a nodal cubic.
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Frozen Boundary of a Rhombus Tiling of an Octagon

Example 1
Equations of Sides

y = −
√

3(x + 2)

y =
√

3(x + 2)

y = −
√

3(x − 3)

y =
√

3(x − 3)

y = −
√

3(x − 1.5)

y =
√

3(x − 1.5)

y = −2

y = 2
Equation of Frozen Boundary

−819.68 + 5255.08x − 10097.5x2 + 2939.42x3 + 5654.49x4 −
126470y2 − 47651.6xy2 + 20749x2y2 + 38224.3y4 = 0
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Frozen Boundary of a Tiling of a
Hexagonal Domain



Future Directions
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Hexagon with a Hole
Nephroid

More Complex Domain
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